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BACKGROUND

Many modern explosive applications require finit. element and finite difference
modeling of both overdriven detonation and lower pressure detonation products expansion.
Large detonation wave shaping ahd multiple point initiation are typical overdriven detonation
applications.  Lower pressure detonation products expansion is required for material
acceleration applications, such as explosively formed penetrators and shaped charges. Current
thermodynamic equation of states used in dynamic finite element and finite difference
programs are either parameterized to give agreement with thermochemical calculations [1] or
experimental copper cylinder explosive expansion experiments [2,3]. Thermochemical
calculations have proven to be very useful for the prediction of explosive products propertics,
particularly near and above the Chapman-Jouguet state [4,5]. Unfortunately, they do not
reproduce the products expansion behavior accurately enough for typical warheads design.
Currently, thermodynamic equations of state (JWL, Wilkens) [2,3] used for warheads design
are nommally calibrated to give agreement with copper cylinder explosive expansion
experiments. These equations of state have not been calibrated for high pressures above the
Chapman-Jouguet state.  Experimentation [6] and comparison with thermochemical
calculations (Figutes 1,2, and 3) have demonstrated that a poor description of ihe high pressure
region exists. In order to achieve a suitable equation of state for both overdriven and lower
pressure products expansion, an appropriate equation of state form has been derived. A
previous preliminary report [7] briefly describes the equation of state and parameterization
methodology, but does not include details. This report provides a detailed theoretical
background and equatioa of state formulation. A forthcoming report will provide a detailed
description of the parameterization methodology.

EQUATION OF STATE FORMULATION

The equation of state form was chosen so as to adequately describe the high pressure
regime produced by overdriven detonation, and yct retain the low pressure expansion behavior
required for standard material acceleration modeling. To this end, the derived form is based
on the Jones-Wilkens-Lee (JWL) equation of state [1] due to its computational robustness, and
asymptotic approach to an ideal gas at high expansions. Additional exponential terms and a
variable Gruneisen parameter have been added to adequately describe the high pressure region
above the Chapman-Jouguet state.  The resulting equation of state form, named
Jones-Wilkens-Lee-Baker (JWLB), is
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For consistency with the JWL equation of state, V is defined as a specific volume ratio, V =
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po/p and E is defined as E = pee where e is the specific internal energy. The JWLB equation
of state form is based on a first order expansion around the principal isentrope:
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Using the Gruneisen Parameter,
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the isentropic identity,
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and the Chapman-Jouguet condition,

Eej = Eo + 3Py + Po)(Vo - V)
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the final form may be derived
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2 Final Form.

Some important characteristics of the equation of state are that the Gruneiser Parameter 2, is
represented as an analytic function of specific volume, V. A + 1 approaches a constant

V 3P

adiabatic gamma, P qv = @ + 1 for large V, so that ideal gas behavior is asymptotically

approached. The prmcxpai isentrope description is essentially identical to JWIL, with the
exception of an increased number of exponential terms. It has been found that for most
explosives, three exponential terms (instead of two in JWL) are adequate to describe the
principal isentrope over both the high pressure region above the Chapman-Jouguet state and
the lower pressure expansion region. It is important to note that the internal energy
referencing is defined by (7). The value of Eo must be consistent so that,




RVc, C

Eo= XR + vc, —(PCJ + P)(Vo - V) . ©9)

Normally, the equation of state parameters are chosen so that Eo has the value Eo = poAH,
where AH is the heat of detonation. This is consistent with the initial internal energy of the
unreacted material having a value of zero.

SPEED OF SOUND

The generalized speed of sound is often required for implementation into a finite element
or finite difference program. The spced of sound may be casily derived as follows,
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ADIABATIC GAMMA

Another useful quantity is the generalized adiabatic gamma. The adiabatic gamma may also
be casily derived,
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PRINCIPAL ISENTROPE PROPERTIES

COften, properties along the isentrope tnat passes through the Chapman-Jouguet state are of
particular interest. The Gruneisen parameter is giver by (2). The adiabatic gununa is given
by,
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The speed of sound along the principal sentrope is given by,
(12)3 pc” = ZA RVeRiY + Cloryv @, (19)

REACTED PRODUCTS HUGONIOT

Another often used state space locus is the reacted products Hugoniot.  Assuming the initial
pressure to be zero, conservation gives,

Mass: puD = p(D-1) (20)

Momentum: P = p.Du (21)
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CONCLUSION

An advances trirmodynamic equation of state applicable to problems involving
overdriven detonation il material acceleration has been developed and calibrated for several
explosives. This monuccript has presented a theoretical background and formulation for the
ncw cquation of state. A forhcoming report will describe the parameterization methodology.
The new equation of staie muirtains required low pressure expansion behavior while providing
a better high pressure descriptic applicable to overdriven detonation. Typical applications of
the new equation of state include wave shaped and peripherally initiated munitions. Finally,
the equation of state asymptotically approaches the constant gamma cquation of state at high
expansions. It is therefore believed that the equation of state will be applicable to extremely
large volume expansion applicatiors, such as blast, without a loss of accuracy in the higiier
pressure regions. In order to use the equation of state for very large expansions, proper
calibration to very large volume expansion experimentation will be required.

SYMBOLS
F = Pressure

p = Density

V' = Ratio of Specific Volume to Initial Specitic




Volume

E = Specific Internal Energy divided by Initial
Specific Volume

A = Gruneisen Parameter
y = Adiabatic Gamma
¢ = Sound Speed
D = Detonation Velocity
u = Mass Velocity
Al = Heat of Detonation

Ay R, G AAi’

BAi’ RM’ w = Eqoation of State Constants

+ = Isentropic
¢ = Chapman-Jouguet State
«= Initial Conditions
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Figure 1. Pressure versus specific volume for the principal isentrope of octol 75/25 below the
Chapman-Jouguet state. ‘Lhe thermochemical calculations (BKWR and JCZ3) agree fairly well
with the standard JWL.
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Figurc 2. Pressure versus specific volume for the principal isentrope and reactive Hugoniot of
octol 75/25 above the Chapman-Jouguet state. The standard JWL underpredicts the high
pressure region.
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